
Research & Projects
Celebrating the work advancing Guloninae conservation.
The Martes Working Group is home to an extraordinary community of scientists, students, conservationists, and advocates. This page will soon feature innovative projects and research from around the world, all dedicated to the conservation and understanding of the eleven species in the Martes complex.
If you’re a current MWG member, you can help build this resource by sharing your project.
A Growing Showcase of Member-Led Work
Explore Research & Projects by Species
American Marten (Martes americana)
Alas, B. L., Rodriguez Curras, M., Smith, M. M., Potvin, L. R., Romanski, M. C., & Pauli, J. N. (2025). The repatriation of wolves to Isle Royale alters the foraging of meso-carnivores. Journal of Mammalogy, 106(1), 30–38. https://doi.org/10.1093/jmammal/gyae125
Milligan, H. E., Kukka, P. M., Kuba, K., Florkiewicz, R. F., & Jung, T. S. (2025). Assessing indicators of harvest sustainability in northern populations of marten (Martes americana). European Journal of Wildlife Research, 71(12). https://link.springer.com/article/10.1007/s10344-024-01891-3
Sullivan, T.P., Druscilla, S & Vyse, A. (2025) Heat Wave, Cone Crops, Forest-Floor Small Mammals, and Mustelid Predation in Coniferous Forests of Southern British Columbia. Ecologies, 6(2), 39. https://doi.org/10.3390/ecologies6020039
Samson, C., Paquin, S., Wood, S. & Caron, O.P. (2025) Development and implementation of an ecological connectivity indicator in a network of protected areas in the Gaspé Peninsula. Le Naturaliste Canadian, 149(1), 59-80. https://id.erudit.org/iderudit/1117580ar (Original in French).
Viau,J.P., Sigouin, D. & St-Laurent,M.H. (2025) Functional connectivity across seasons: A case study with the American marten in Forillon National Park. Le Naturaliste Canadian, 149(1), 91-102. https://id.erudit.org/iderudit/1117582ar (Original in French).
Interested in learning more about this species?
Pacific Marten (Martes caurina)
Gamblin, H. E. L., Slauson, K. M., & Szykman Gunther, M. (2025). Habitat use and distribution of a recently discovered population of Humboldt martens. Northwest Science, 97(4), 274–289. https://doi.org/10.3955/046.097.0404
Beever, E.A., Smith, A.B., Wright, D., Rickman, T., Gerraty, F.D., Stewart, J.A.E., Gill, A., Klinglier, K. & Robinson, M. (2025) Expanding barriers: Impassable gaps interior to distribution of an isolated mountain-dwelling species. Ecosphere, 16(6), e70223. https://doi.org/10.1002/ecs2.70223
Interested in learning more about this species?
Japanese Marten (Martes melampus)
Abe, S., & Tsuji, Y. (2025). Feeding strategy of wild Japanese martens (Martes melampus) in northern Japan. Zoological Science, 42(2), 178–185. https://doi.org/10.2108/zs240072
Hisano, M., Nakabayashi, M., Ohte, N., & Evans, M. J. (2025). Urban records of the Japanese marten (Martes melampus) in a small woodland patch in central Japan. Journal of Vertebrate Biology, 74(24126), 1–9. https://doi.org/10.25225/jvb.24126
Tsunoda, H., Hisano, M., Enomoto, T., & Saito, M. U. (2025). Anthropogenic disturbance mediates trophic niche overlap between sympatric generalist predators. Integrative Zoology. https://doi.org/10.1111/1749-4877.12966
Tsunamoto, Y., Koike, S., Tayasu, I., Masaki, T., Kato, S., Kikuchi, S., Nagamitsu, T., Haraguchi, T. F., Naganuma, T., & Naoe, S. (2025). Fruiting phenology affects the direction of vertical seed dispersal by mammals and birds across mountain ranges. Oecologia, 207, 24. https://link.springer.com/article/10.1007/s00442-025-05663-x
Yamashita, J., Akamatsu, M., Enari, H. S., Sembongi, Y., & Enari, H. (2025). Cascading effects driven by population recovery of sika deer on habitat use of sympatric mammals under heavy snow conditions. Journal of Zoology, 325(1), 92–99. https://doi.org/10.1111/jzo.13233
Sato JJ, Kosakaie R, Kado K, Yamaguchi Y (2025) Fecal DNA metabarcoding analyses imply seasonally opportunistic feeding by the Japanese marten Martes melampus (Mammalia: Carnivora) in southwestern Honshu Island, Japan. Zoological Science (in press).
Ueda, R., Kihara, Y., Hayama, S. & Tanaka, A. (2025) Case of Japanese Marten (Martes melampus) Identification by mtDNA Analysis in a Series of Vehicle Cable Damage Incidents. Animals, 15(12), e1795. https://doi.org/10.3390/ani15121795
Tokiwa, T., Doi, K. & Kitajima, A. (2025) Wild Japanese Marten, Martes melampus melampus (Carnivora: Mustelidae), Is a New Host for Zoonotic Thelazia callipaeda Eyeworm. Ecology and Evolution, 15(5), e71439. https://doi.org/10.1002/ece3.71439
Interested in learning more about this species?
Sable (Martes zibellina)
Kinoshita G, Sato T, Murakami S, Monakov V, Kryukov AP, Frisman LV, Tsunamoto Y, Suyama Y, Murakami T, Suzuki H, Sato JJ (2024) Ice-age land bridges to continental islands: repeated migration of the forest-dwelling sable in northeastern Asia. Journal of Biogeography 51 (5): 924-939 https://doi.org/10.1111/jbi.14797.
Gilbert, M., Hill, M.A.M., Cheung, L.Y.N., Kiser, P.K., Seryodkin, I.V., Miquelle, D.G., Goodrich, J.M., Sulikham, N., Uphyrkina, O., Goncharuk, M., Kerley, L. & Troyer, R.M. (2025) Predator-prey transmission of a gammaherpesvirus from Asian badgers (Meles leucurus) to endangered Amur tigers (Panthera tigris altaica). PLoS One, 20(7), e0327263. https://doi.org/10.1371/journal.pone.0327463
Argunov, A.V. & Safronov, V.M. (2025) Relationship between the Sable (Martes sibellina) and the Musk deer (Moschus moschiferus) In Yakutia. Zoologicesku Zurnal, 104(4), 96-103. https://journals.eco-vector.com/0044-5134/article/view/684208 [Russian].
Interested in learning more about this species?
Yellow-throated Marten (Martes flavigula)
Bhat, M. Y., & Soontha, L. (2025). Economic valuation of Himalayan biodiversity. In Non-market valuation in South Asia. Routledge.
Cha, S. T., Goswami, V. R., Ri, C., Hines, J. E., & Oli, M. K. (2025). Spatiotemporal interactions facilitate sympatry in a diverse mammalian community. Ecosphere, 16(2), e70125. https://doi.org/10.1002/ecs2.70125
Dawood, U., Teli, Z. A., Bhat, B. A., Charoo, S. A., & Rashid, L. (2025). Understanding the patterns of livestock predation by wild carnivores for conservation planning in Kupwara, Kashmir Himalaya. European Journal of Wildlife Research, 7, 9. https://link.springer.com/article/10.1007/s10344-024-01889-x
이은옥, 우동걸, 박희복, & 최태영. (2025). Reporting of dietary habits through hair analysis of medium sized carnivore’s and omnivore’s faeces in South Korea. Korean Journal of Environmental Biology, 34(1), 84–90. https://db.koreascholar.com/Article/Detail/439927
Jang-Liaw, N. H., Huang, H. M., Chen, Y. J., Yim, L. M., Yeh, N. C., Chung, C. H., & Chiang, P. J. (2025). Identification of scat samples from three terrestrial mustelids in Taiwan: A simple method. Wildlife Biology, e01364. https://doi.org/10.1002/wlb3.01364
Lama, S. T., Bugler, K. A., Ross, J. G., & Paterson, A. M. (2025). Use of camera traps to record wild red panda activity in eastern Nepal. Wildlife Society Bulletin, e1583. https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/wsb.1583
Li, J. J., Fang, Y. H., Zhan, J. C., Yang, X. J., Huang, C. B., Li, Y. P., Tan, K., Huang, Z. P., Cui, L. W., & Xiao, W. (2025). Watershed: A more efficient sampling unit for mountain camera traps. Scientific Reports, 15, 4270. https://www.nature.com/articles/s41598-025-86031-w
Manandhar, P., Pereira, K. S., Kusi, N., Joshi, J., Levin, N., Chaudhary, H. K., Wultsch, C., Lamichhane, S., Bhandari, S., Guragain, L., Rajbhandari, R. M., van Rensburg, B. J. V., Kark, S., & Karmacharya, D. (2025). Feeding habits of leopards and leopard cats in the fragmented forests surrounding the Kathmandu Valley. Ecology and Evolution, 15(2), e70927. https://doi.org/10.1002/ece3.70927
Rustam, Matius, P., Boer, C., Sardjono, M. A., Syoim, M., Ariyanto, Prasetya, A., Fredriksson, G., Nuryani, A., Nainggolan, K., & Landon, N. (2025). The mammals of Indonesia's new capital: Baseline mammalian data for forest city management and wildlife monitoring. IOP Conference Series: Earth and Environmental Science, 1447, 012013. https://iopscience.iop.org/article/10.1088/1755-1315/1447/1/012013/meta
She, W., Holyoak, M., Gu, J., Qi, J., Liu, S., & Jiang, G. (2025). Abundant top predators increase species interaction network complexity in northeastern Chinese forests. Journal of Animal Ecology, 94(4), 745–759. https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2656.70011
Sun, S., Mao, R., Dou, H., Gao, H., Wang, Y., Zhang, Y., Wu, F., Kuang, Y., Xiao, Z., & Hua, Y. (2025). Chinese pangolin changes local vertebrate assemblages and contributes to their interspecific interactions by burrowing and revisitation. Integrative Zoology. https://doi.org/10.1111/1749-4877.12946
Tomassini, O., Favilla, A., Aghemo, A., Bedini, G., Petroni, G., Giunchi, D., & Massolo, A. (2025). Wildfires affect mesocarnivores' habitat use and mammalian predator-prey relationships in a Mediterranean ecosystem. Acta Oecologica, 123, 103986. https://www.sciencedirect.com/science/article/pii/S1146609X24000080
Wong, S. T., Guharajan, R., Petrus, A., Jubili, J., Kissing, J., Lagan, P., Ong, R., Wilting, A., & Sollmann, R. (2025). Terrestrial wildlife shows limited response in spatiotemporal activity to logging. Ecosphere, 16(2), e70185. https://doi.org/10.1002/ecs2.70185
Zhao, K., Wang, N., Xu, J., Tian, S., & Zhang, Y. (2025). Habitat use and spatial distribution patterns of endangered pheasants on the southern slopes of the Himalayas. Global Ecology and Conservation, 57, e03414. https://doi.org/10.1016/j.gecco.2025.e03414
Zhou, Y., Zhang, Q., Gao, P., Yang, S., & Xu, Y. (2025). Unlocking the potential of animal hair shafts for genomic studies: A comprehensive evaluation of DNA quality. Biology, 14(4), 353. https://doi.org/10.3390/biology14040353
Shrestha, S., Prasad Koju, N., Thapa Magar, A., Bhakta, Shrestha, S. & Ghimire, S. (2025) Winter diet analysis of leopard (Panthera pardus) in the Nagarjun Forest of Shivapuri Nagarjun National Park. Banko Janakari, 35(1), 3-11. https://doi.org/10.3126/banko.v35i1.70162
Chackaravarthy, S.D., Krishnamurthy, R. & Gopi, D.V. (2025) Diel Activity Pattern and Co-occurrence of Mammal Species in the North-eastern Landscape, Arunachal Pradesh, India. Asian Journal of Conservation Biology, 14(10), 81-97. https://doi.org/10.53562/ajcb.86986
Kim, M., Kim, H.G., Fath, B.D., Park, H.B. & Hong, S. (2025) Impact of the morphology of logged areas on medium and large mammal communities in forests. Landscape Ecology, 40(133). https://doi.org/10.1007/s10980-025-02140-x
Lee, E., Woo, D., Park, H.B. & Choi, T.Y. (2025) Reporting of dietary habits through hair analysis of medium sized carnivore’s and omnivore’s feces in South Korea. Korean Journal of Environmental Biology, 43(1), 84-90. https://doi.org/10.11626/KJEB.2025.43.1.084 [Korean]
Interested in learning more about this species?
European Pine Marten (Martes martes)
Lewis, E., Fitzmaurice, A., Swinnerton, K., Gardner, R., Ball, L., & Armour-Chelu, N. (2025). Is Britain still great for pine marten? A habitat suitability assessment [Preprint]. bioRxiv. https://www.biorxiv.org/content/10.1101/2025.03.19.643030v2.abstract
O’Reilly, C., Sheehy, E., MacPherson, J., Birks, J., Martin, J., Croose, E., Fletcher, K., Lambin, X., Curran, T., Synnott, R., & O’Meara, D. (2024). Genetic lag in a demographically recovering carnivore: The case of the British pine marten (Martes martes). Conservation Genetics, 26, 165–181. https://link.springer.com/article/10.1007/s10592-024-01660-4
Fredriksson, E., Cromsigt, J.P.G.M. & Hofmeester, T.R. (2025) Wildfire influences species assemblage and habitat utilisation of boreal wildlife after more than a decade in northern Sweden. Wildlife Biology, Issue 3, e01296. https://doi.org/10.1002/wlb3.01296
Reilly, E. & Lawton, C. (2025) Red squirrels exhibit antipredator behavioural changes in response to a native predator, the pine marten. Royal Society of Open Science, 12(6). https://doi.org/10.1098/rsos.250661
Bamber, J.A., Sutherland, C., Kortland, K. & Lambin, X. (2025) Empirical evidence that diversionary feeding increases productivity in ground-nesting birds. Proceedings of the Royal Society B, 292(2049). https://doi.org/10.1098/rspb.2024.2921
Kochs, M., Coppes, J., Beutel, T., Holz, G., Kammerle, J.L., Kraft, M. & Braunisch, V. (2025) Benefit or ecological trap? Monitoring the effects of small clear-cuts on capercaillie Tetrao urogallus and its mammalian predators. Wildlife Biology, e01408. https://doi.org/10.1002/wlb3.01408
Chernikova, A., Dmitriyev,P., Zuban,I., Ismagulova,S. & Nyrqan,Zh. (2025) Peculiarities of creating an Internet resource of rare and endangered species of North Kazakhstan region. Bulletin of the L.N. Gumilyov Eurasian National University. Ecology Series.151(2). https://doi.org/10.32523/2616-6771-2025-151-2-308-326
Interested in learning more about this species?
Nilgiri Marten (Martes gwatkinsii)
Balakrishnan, P. (2025). Characteristics of tree hollows used by Nilgiri marten (Martes gwatkinsii) in the Western Ghats, India. Mammalia. https://doi.org/10.1515/mammalia-2024-0020
Interested in learning more about this species?
Stone Marten (Martes foina)
Canuti, M., Mira, F., Villanúa, D., Rodríguez-Pastor, R., Guercio, A., Urra, F., & Millán, J. (2025). Molecular ecology of novel amdoparvoviruses and old protoparvoviruses in Spanish wild carnivorans. Infection, Genetics and Evolution, 128, 105714. https://www.sciencedirect.com/science/article/pii/S1567134825000036
Peris, A., Mampel, T., Vilella, M., Pons, D., Real, J., & Puig-Gironès, R. (2025). Spatio-temporal patterns of carnivore guild related to their prey in a Mediterranean landscape. Journal of Zoology, 325(3), 242–253. https://doi.org/10.1111/jzo.13246
Sgroi, G., et al. (2025). Massive subcutaneous filariosis by Filaria martis in beech marten (Martes foina) in Italy. Parasite Epidemiology and Control, 28, e00406. https://doi.org/10.1016/j.parepi.2024.e00406
Tomarovsky, A., Khan, R., Dudchenko, O., Totikov, A., Serdyukova, N. A., Weisz, D., Vorobieva, N. V., Bulyonkova, T., Abramov, A. V., Nie, W., Wang, J., Romanenko, S. A., Proskuryakova, A. A., Cherkasov, N., Ferguson-Smith, M. A., Yang, F., Balanovskaya, E., Gilbert, M. T. P., Graphodatsky, A. S., Lieberman Aiden, E., Powell, R., Koepfli, K.-P., Perelman, P. L., & Kliver, S. (2025). Chromosome length genome assembly of the stone marten (Martes foina, Mustelidae): A new view on one of the cornerstones in carnivore cytogenetics. Journal of Heredity. https://doi.org/10.1093/jhered/esaf001
Tomassini, O., Favilla, A., Aghemo, A., Bedini, G., Petroni, G., Giunchi, D., & Massolo, A. (2025). Wildfires affect mesocarnivores' habitat use and mammalian predator-prey relationships in a Mediterranean ecosystem. Acta Oecologica, 123, 103986. https://www.sciencedirect.com/science/article/pii/S1146609X24000080
Tsunoda, H., Peeva, S., Raichev, E., & Kaneko, Y. (2025). Ecological traits and intraguild competition mediate spatial and temporal overlaps among sympatric mesocarnivores. Diversity, 17(1), 108. https://doi.org/10.3390/d17020108
Cox, K., Gouwy, J., Mergeay, J., Neyrinck, S. & Van Den Berge, K. (2025) Rapid Colonisation of Synanthropic Stone Martens in a Highly Urbanised Region: Insights From Temporal and Spatial Analysis. Ecology and Evolution, 15(5), e71392. https://doi.org/10.1002/ece3.71392
Feher, E., Kemenesi, G., Gorfol, T., Wazzani, Y., Bodo, K., Lanszki, J., Mate, D., Kaszab, E., Doman, M., Zadori, Z. & Lanszki, Z. (2025) Occurrence of Recombinant Canine Coronavirus, Picodicistrovirus, and Circovirus in Red Foxes (Vulpes vulpes) Implies Frequent Virus Transmission Events Among Carnivores. Transboundary and Emerging Diseases, e6681119. https://doi.org/10.1155/tbed/6681119
Михайло Дребет. & Анастасія Ліщук (2025) Marten - the symbol species of 2024 in the Podilski Tovtry National Nature Park. Novitates Theriologocae, Pars, 17, 188-192. [Ukrainian] http://www.terioshkola.org.ua/library/nt17-lockdown/nt1733-drebet-martes2024.pdf
Interested in learning more about this species?
Tayra (Eira barbara)
Barroso, B. I. de L., et al. (2025). Mapping the trans-population of Baixada Santista, 2023 descriptive study. Epidemiology and Health Services, 33. https://www.scielosp.org/article/ress/2024.v33nspe1/e2024409/pt/
Calixto, A. Z., Silveira, F. A. O., & Massara, R. L. (2025). What do we know about seed dispersal by carnivorans in Brazil? Acta Oecologica, 127, e104073. https://www.sciencedirect.com/science/article/abs/pii/S1146609X25000177
García-Casimiro, E., & Santos-Moreno, A. (2025). Activity patterns of an arboreal and semi-arboreal mammal community. Mammal Research, 70, 35–47. https://link.springer.com/article/10.1007/s13364-024-00775-w
Manzo, I. A., da Silva, R. G., & Bianchi, R. C. (2025). The influence of domestic dogs on the spatial and temporal distribution of tayra. Wildlife Biology, 2025(2), e01298. https://doi.org/10.1002/wlb3.01298
Rodas-Trejo, J., Gómez-Tolosa, M., Naranjo, E. J., & López, S. (2025). Assessing the effects of landscape attributes in medium and large terrestrial mammal richness inside a tropical rainforest biosphere reserve. Environmental Monitoring and Assessment, 197, 402. https://link.springer.com/article/10.1007/s10661-025-13865-2
Rojas-Sánchez, J. V., Coates, R. I., Sánchez-Cordero, V., Lavariega, M. C., & Flores-Martínez, J. J. (2025). Diversity and abundance of the species of arboreal mammals in a tropical rainforest in southeast Mexico. Ecology and Evolution, 15(1), e70812. https://doi.org/10.1002/ece3.70812
Aya-Cuebo, C.A.., Molina-Vargas, B.A., Stasiukynas, D.C., Paez-Vasquez, M., Pantoja-Pena, G., Caceres-Martinez, C.H. & Pardo, L.E. (2025) First records of hypopigmentation of Tayra Eira barbara in Colombia. Therya Notes, 6(2), 55-60. https://doi.org/10.12933//therya_notes-25-199
Pinheiro-Costa, N.C. (2025) Leucism occurrence frequency in an island population of tayra (Eira barbara), in Roraima, Brazil: A comparative analysis with camera trap records. Acta Amaz., 55. https://doi.org/10.1590/1809-4392202303681
Perez, E.H., Quintana, J.A.V., Dominguez, J.C.L. & Barrera, F.L. (2025) Notable records of Galictis vittata and Eira barbara (Carnivora: Musteliade) in the Northeastern Sierra of Puebla, Mexico. Therya Notes, 6(2), 69-76. https://doi.org/10.12933/therya_notes-25-2 [Spanish].
Gamboa-Suarez, B.A., Gonzalez, A.D., Nova-Chamorro, M.H., Brieva, C. & Matta, N.E. (2025) Clinical and Pathological Effects of Filariasis in Tayra (Eira barbara) and Crab-Eating Fox (Cerdocyon thous) From Colombia. Integrative Zoology, e12993. https://doi.org/10.1111/1749-4877.12993
Fontoura, C., Bernardes Dias, A.C., Mendes de Oliveria, A.K., Barbosa Ralla, J.P. & Hannibal, W. (2025) First record of albinism in a Crab-eating Fox and review of anomalous coloration in Neotropical carnivores. Mammalia. https://doi.org/10.1515/mammalia-2024-0161
Gomez-Ruiz, D.A. & Lenis, C. (2025) Helminths of small carnivores (Mammalia: Carnivora) from a Tropical Dry Forest in the Colombian Caribbean. Veterinaria Italiana, 61(3). https://doi.org/10.12834/VetIt.3689.34488.2
Interested in learning more about this species?
Fisher (Pekania pennanti)
Fogarty, R. D., Weir, R. D., & Larsen, K. W. (2025). Forestry, fire, and fur: Factors influencing densities of endangered fishers (Pekania pennanti) in central British Columbia, Canada. The Journal of Wildlife Management, 89(4), e70010. https://doi.org/10.1002/jwmg.70010
Ganoe, L. S., Northrup, J. M., Mayer, A. E., Brown, C., & Gerber, B. D. (2025). Individuality, diel time, and landscape context shape space-use of an elusive carnivore in a risky environment. Landscape Ecology, 40, 81. https://link.springer.com/article/10.1007/s10980-025-02089-x
Martin, M. E., Moriarty, K. M., Hayner, S., Fiorella, M., Ducey, C. D., Hollen, B., & Matthews, S. M. (2025). Forest structure and stand characteristics influence the space use and fine-scale movements of fishers (Pekania pennanti). Animal Conservation. https://doi.org/10.1111/acv.70007
Shively, K. A., Reese, E. M., Ransom, J. I., Wirsing, A. J., Lewis, J. C., Chestnut, T., Werntz, D. O., Whiteside, D. P., & Prugh, L. R. (2025). Metabarcoding reveals striking dietary variation in a reintroduced mesocarnivore. Journal of Mammalogy. https://doi.org/10.1093/jmammal/gyaf018
Smith, T. R., Gese, E. M., Clayton, D., Terletzky, P. A., Purcell, K. L., & Thompson, C. M. (2025). Determining spatial responses of fishers (Pekania pennanti) to mechanical treatments of forest stands for fuel reduction. Animals, 15(3), 434. https://doi.org/10.3390/ani15030434
Silveira, G., Frair, J. L., Cohen, J., Watson, M., Tate, P., Royar, K., Bernier, C., & Schuler, K. (2025). Anticoagulant rodenticides may affect fisher population trends in the northeastern United States. The Journal of Wildlife Management, 89(4), e22727. https://doi.org/10.1002/jwmg.22727
Remmers, J.J., Stodola, K.W. & Allen, M.L. (2025) Fisher (Pekania pennanti) Populations Exhibit Regional Differences in Cause-Specific Mortality but Not Survival Rates. Ecology and Evolution, 15(6), e71531. https://doi.org/10.1002/ece3.71531
Martin, M.E., Green, R., McGregor, E.L., Matthews, S.M., Purcell, K.L. & Thompson, C.M. (2025) Drought-induced tree mortality affects the space-use and individual plasticity of an endangered forest carnivore. Biological Conservation, 310, e111349. https://doi.org/10.1016/j.biocon.2025.111349
Hindmarch, S., Elliot, J., Weir, R., Lee, S. & Maisonneuve, F. (2025) Anticoagulant rodenticide exposure in endangered American badgers (Taxidea taxus) and fishers (Pekania pennanti) from British Columbia, Canada, 1998 to 2018. Environmental Pollution, 375, e126278. https://doi.org/10.1016/j.envpol.2025.126278
Mayer, A.E., Ganoe, L.S., Brown, C., Rezendes, K., Burr, J., Paton, E., Wampole, E., Rivera, K., Stift, A.M., Noe, K.L., Carey, A.E., Hughes, A., McGreevy Jr, T.J. & Gerber, B.D. (2025) Rhode Island wildlife camera trap survey 2018 to 2023. Ecology – Ecological Society of America, 106(5), e70094. https://doi.org/10.1002/ecy.70094
Jones, G.M., Collins, B.M., Hankin, L.E., Hart, R., Meyer, M.D., Regelbrugge, J., Steel, Z.L. & Thompson, C. (2025) Collapse and restoration of mature forest habitat in California. Biological Conservation, 308, e111241. https://doi.org/10.1016/j.biocon.2025.111241
Mallory, M.K., MacLean, S., Baak, J.E., Boudreasu, M., Priest, J.M., Morrill, A., Provencher, J.F. & O’Driscoll, N. (2025) Mercury in eastern coyotes from Nova Scotia, Canada: Effects of geography and trophic position. Science of the Total Environment, 874, e179186. https://doi.org/10.1016/j.scitotenv.2025.179186
Cunningham, S.A., Frair, J.L., Jensen, P.G. & Schuler, K.L. (2025) Spatiotemporal drivers of rodenticide exposure in a mammalian forest carnivore. Science of the Total Environment, 982, e179605. https://doi.org/10.1016/j.scitotenv.2025.179605
Hart, R., Thompson, C.M., Tucker, J., Sawyer, S.C., Eyes, S.A., Saberi, S.J., Yang, Z. & Jones, G.M. (2025) Rapid Declines in Southern Sierra Nevada Fisher Habitat Driven by Drought and Wildfire. Diversity and Distributions, 31(5), e70023. https://doi.org/10.1111/ddi.70023
Interested in learning more about this species?
Wolverine (Gulo gulo)
Derksen, M. J., Pidwerbesky, A. J., Papineau, A., Petersen, S. D., & Detwiler, J. T. (2025). Relatively low prevalence and genetic diversity of Trichinella nativa in wolverines (Gulo gulo) from Churchill, Manitoba, Canada. Journal of Wildlife Diseases. https://doi.org/10.7589/JWD-D-24-00070
Fisher, J. T., Jahid, M., Gutsell, R., Hubbs, A., Cowen, L. L. E., Barrueto, M., Heim, N., & Paczkowski, J. (2025). An estimate of wolverine density for the Canadian province of Alberta. Ecology and Evolution, 15(1), e70702. https://doi.org/10.1002/ece3.70702
Kaiser, J., Hahn, T., Krueger, T., & Haase, D. (2025). Investigating conservation performance payments alongside human–wildlife conflicts: The Swedish lynx and wolverine protection policies. People and Nature. https://doi.org/10.1002/pan3.70010
Mayer, M., Dyngeland, C., Wabakken, P., Tofastrud, M., & Zimmermann, B. (2025). Patterns of cattle and sheep losses related to large carnivores and other causes in the outfields of Norway. Biological Conservation, 305, 111107. https://www.sciencedirect.com/science/article/pii/S0006320725001442
Moqanaki, E., Milleret, C., Dupont, P., & Bischof, R. (2025). Environmental variability across space and time drives the recolonization pattern of a historically persecuted large carnivore. Proceedings of the National Academy of Sciences (PNAS), 122(5), e2401679122. https://doi.org/10.1073/pnas.2401679122
Stacy, E. M., Robards, M. D., Jung, T. S., Kukka, P. M., Sullivan, J., Hohenlohe, P. A., & Waits, L. P. (2025). Comparing microsatellites and single nucleotide polymorphisms to evaluate genetic structure and diversity in wolverines (Gulo gulo) across Alaska and western Canada. Journal of Mammalogy. https://academic.oup.com/jmammal/advance-article/doi/10.1093/jmammal/gyae151/7954623
Moskowitz, DE., Machowicz, A.C., Scrafford, M.A., Naveau, P., Rose, J.N. & Williams, S. (2025) Evaluating the accuracy of wolverine identification from photographs of snow tracks by expert observers in North America. Wildlife Biology, e01466. https://doi.org/10.1002/wlb3.01466
Scrafford, M.A., Copeland, J., McCaw, L.K., Sawaya, M.A. & Boyce, M. (2025) Wolverines and wilderness: a review of wolverine response to human disturbance. Environmental Reviews, Volume 33. https://doi.org/10.1139/er-2024-0125
Vickers, H. (2025) Some (Don't) Like it Hot: Investigations of wolverine (Gulo gulo) activity patterns across seasons. Student Thesis. Uppsala University. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1953325&dswid=2719
Bughan, K.C., Davis, B.H., Pilgrim, K.L., Carlson, A.A., Morales, S.E., Ramsey, P.W., Schwartz, M.K. & Howie, M.G. (2025) A portable structure for identifying wolverines and Canada lynx using integrated cameras and hair snags. The Journal of Wildlife Management, 89(6), e70053. https://doi.org/10.1002/jwmg.70053
Glass, T.W., Copeland, J.P., Olson, L.E., Waller, J.S. & Squires, J.R. (2025) Wolverines use spatial memory to plan efficient routes through rugged terrain. Movement Ecology, 13(45). https://link.springer.com/article/10.1186/s40462-025-00571-4
Stacy, E.M., Robards, M.D., Jung, T.S., Kukka, P.M., Sullivan, J., Hohenlohe, P.A. & Waits, L.P. (2025) Comparing microsatellites and single nucleotide polymorphisms to evaluate genetic structure and diversity in wolverines (Gulo gulo) across Alaska and western Canada. Journal of Mammalogy, 106(3), 561-575. https://doi.org/10.1093/jmammal/gyae151
Soltero-Rivera, M., Evenhuis, J.V., Arzi, B. & Verstraete, F.J.M. (2025) Dental and temporomandibular joint pathology of the North American wolverine (Gulo gulo luscus). Journal of Comparative Pathology, 221, 6-13. https://doi.org/10.1016/j.jcpa.2025.07.003
Interested in learning more about this species?
Multi-Species Martes
(America marten & Fisher): Twining, J. P., Augustine, B. C., Royle, J. A., & Fuller, A. K. (2025). Abundance-mediated species interactions. Ecology, 106(1), e4468. https://doi.org/10.1002/ecy.446
(American marten & Fisher): Joyce, M., Velander, T.B., Macmahon, M. & Moen, R.A. (2025) Using temperature loggers to monitor den box use by American martens, fishers, and tree squirrels. Stacks Journal, Martes Species Issue. https://stacksjournal.org/article/joyce-25003/
(American marten & Fisher): Jolly, S.R., Gilbert, J.H., Woodford, J.E. & Pauli, J.N. (2025) Temporal partitioning among sympatric forest carnivores drives a temporal mismatch with preferred prey. Journal of Mammalogy, gyaf040. https://doi.org/10.1093/jmammal/gyaf040
(American marten & Fisher): Wheelhouse, L., Bryan, H., Crowley, S., Johnson, C. & Hodder, D. (2025) Riparian Areas and Fine-Scale Forest Cover and Structure Drive Occupancy Patterns of Sympatric Mustelids. Ecology and Evolution, e71370. https://doi.org/10.1002/ece3.71370
(Fisher & American marten & Wolverine): Elbroch, L. M., Vucetich, J. A., Rose, C., & Bruskotter, J. T. (2025). Supporting wildlife restoration in eastern states via state wildlife action plans. Diversity and Distributions, 31(1), e13971. https://doi.org/10.1111/ddi.13971
(American marten, Fisher & Wolverine): DellaSala, D.A., Africanis, K., Baker, B.C., Rogers, M. & Six, D. (2025) An Ecoregional Conservation Assessment for the Northern Rockies Ecoregion and Proposed Climate Refugium in the Yaak River Watershed, USA. Forests, 16(5), 822. https://doi.org/10.3390/f16050822
(Fisher & Pacific marten): Ramos, S. C., & Culver, M. (2025). Integration of Indigenous research methodologies, Traditional Ecological Knowledge and molecular scatology in an assessment of mesocarnivore presence, diet and habitat use on Yurok Ancestral Lands. Molecular Ecology Resources, 25(2), e13963. https://doi.org/10.1111/1755-0998.13963
(Stone marten & Pine marten): Alfano, F., Lucibelli, M. G., D’Alessio, N., Auriemma, C., Rea, S., Sgroi, G., Lucente, M. S., Pellegrini, F., Diakoudi, G., De Carlo, E., Decaro, N., Lanave, G., Martella, V., & Fusco, G. (2025). Detection of canine distemper virus in wildlife in Italy (2022–2024). Frontiers in Veterinary Science, 12. https://doi.org/10.3389/fvets.2025.1527550
(Stone marten & Pine marten): Alfano Zalewski, A., Kołodziej-Sobocińska, M., Virtanen, J. M. E., Zalewska, H., Sironen, T., Zub, K., Nieoczym, M., Popiołek, M., & Wereszczuk, A. (2025). Drivers shaping spillover of Aleutian mink disease virus introduced with American mink among native mustelids. Transboundary and Emerging Diseases. https://doi.org/10.1155/tbed/3184679
(Pine marten & Stone marten): [Preprint] Ceci, N., Mirante, D., Dragonetti, C., Villa, D., Santini, L. & Di Marco, M. (2025) Population density of medium- and large-sized mammals in the Alfina Plateau, central Italy. [Preprint- Research Square]. https://www.researchsquare.com/article/rs-6838753/v1
(Pine marten & Stone marten): Moreno, A., Navarro, I., Chamizo, R., Martinez-Carrasco, C & Sanchez-Garcia, C. (2025) Does Forest Structure Influence the Abundance of Predators and Habitat Competitors of the Endangered Pyrenean Capercaillie? Ecologies, 6(3), 46. https://doi.org/10.3390/ecologies6030046
(Pine marten & Stone marten): Tervo, S. (2025) Viromes of feral and farmed mustelids in Poland : Prevalence, diversity, and transmission of Aleutian mink disease virus and mink Torque teno neovison virus and their coinfection with SARS-CoV-2. Thesis. http://urn.fi/URN:NBN:fi:hulib-202505232342
(Sable & Pine marten): Ranyuk, M.N., Modorov, M.V., & Monakhov, V.G. (2025) Genetic aspects of interspecies hybridization between sable and pine marten based on microsatellite loci data. Stacks Journal, Martes Species Issue. https://stacksjournal.org/article/ranyuk-25005/
(Martes Complex): Birks, J., Johnstone, S., Snell, E. & MacPherson, J. (2025) What is the future for The Martes Complex (Guloninae) in the face of climate change and ecological breakdown? Stacks Journal, Martes Species Issue. https://stacksjournal.org/article/birks-25006/
(Martes): Dymit, E., Garcia-Anleu, R. & Levi, T. (2025) Avoidance–attraction ratios incorrectly characterize behavioral interactions with camera trap data. Ecology – Ecological Society of America, 106(6), e70134. https://doi.org/10.1002/ecy.70134
(Marten Family): Orlova, E., Fedorova, O., Paraskiva, E. & Shaposhnikov, G. (2025) The absolute mass and index of the heart and lungs in representatives of the marten family (Mustelidae) introduced into zooculture. BIO Web of Conferences, 179, 01009. https://doi.org/10.1051/bioconf/202517901009
Interested in learning more about the Martes Complex?
Unlock the Stories Behind the Science
Want to explore the research and conservation projects happening across the Martes complex? MWG members have access to all of the submitted projects. Become a member now to learn about the exciting projects happening all over the world, connect with project leads, and even share your own project work.
Become a Member and Share Your Work
Your research and conservation projects deserve to be seen and celebrated.
By joining the Martes Working Group, you gain the opportunity to share your projects, connect with an international network of Guloninae experts and advocates, and collaborate on meaningful conservation initiatives.